
  

  

Abstract— There are many examples of minimally invasive 
surgery in which tethered robots are incapable of accurately 
reaching target locations deep inside the body either because 
they are too large and result in tissue damage or because the 
tortuosity of the path leads to loss of tip control. In these 
situations, small untethered magnetically-powered robots may 
hold the potential to act as delivery vehicles for therapeutic 
agents. While MRI scanners provide a means to power, control 
and image such robots as they move throughout the body, a 
substantial challenge arises if the clinical application requires 
more than one such robot. The resulting system is 
underactuated and thus its controllability is in question. This 
paper presents a simple motion planning algorithm for two 
magnetic capsules and demonstrates through simulation and 
experiment that nonlinear fluid damping can be exploited to 
independently control the positions of the capsules. 

I. INTRODUCTION  

LUID filled pathways within the body provide natural 
highways for groups of small robots to reach tissue 

targets with minimal damage. The ventricles, for example, 
provide access throughout the brain and can be reached via 
the spinal canal. Robots injected into the spine could be 
directed to any desired targets within the ventricles. If 
properly equipped, they could provide highly targeted 
delivery of drugs within the brain. Alternately, they could 
distribute a network of sensors that could be used to monitor 
for abnormal pressure distributions. Depending on the 
application, the robots could be designed to be 
biodegradable, e.g., for drug delivery, or could simply be 
controlled to swim back down the spine for retrieval. In 
contrast to the circulatory system, the relative uniformity of 
cerebrospinal fluid spaces and the low flow rate of 
cerebrospinal fluid make the brain a hospitable environment 
for such robots. 
 We are not the first to propose such magnetically 
controlled robots. Excellent work has been performed by a 
number of groups on this topic. For example, micrometer 
scale swimming robots have been demonstrated in [1-5] and 
proposed for use in a variety of medical applications 
including drug delivery within the eye [6] and targeted 
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chemotherapeutic delivery through the vasculature [7]. 
 Besides swimming, researchers have also considered 
magnetically powered robots moving on a planar surface [8], 
[9].  Most of the research to date has been focused on 
optimizing the design and motion control of individual 
robots. Also, much of the work has been conducted using 
custom magnetic coils while only a few investigators have 
employed clinical MRI scanners [1,4,5]. This choice has a 
substantial effect on the control methods available. 

Furthermore, past work has focused on micron-scale 
robots that operate at low Reynolds numbers and so 
experience Stokes flow. In contrast, only a few researchers 
have considered motion control at the millimeter scale. In 
particular, MRI control of a 2.5 mm ball bearing in the 
carotid artery of a pig was demonstrated in [10]. 

Millimeter-scale magnetic robots offer advantages for 
some clinical applications since they can produce larger 
magnetic forces and carry larger payloads. They operate at 
higher Reynolds numbers (1-1000), however, and so must be 
modeled using quadratic damping at high speeds. 

The topic that has received the least attention in the 
literature is that of controlling groups of magnetic robots. 
Group control is an important problem in medical 
applications since the size of an individual robot limits its 
payload in drug delivery applications. Furthermore, it may 
be necessary to deliver drugs over a sustained period of time 
to multiple locations – which could be easily accomplished 
if multiple robots could be directed to the individual sites. 

Group robot control is difficult because the same 
magnetic field is applied to all of the robots. For such 
underactuated systems, independent control can be achieved 
by exploiting nonlinearities in the system dynamics. This 
approach has been recently demonstrated for magnetic 
microrobots on a planar surface in a fluid using custom coils 
[8]. By designing the robots to maximize the difference in 
their stick-slip properties on the planar surface, it is possible 
to design a motion planner to achieve independent control 
their position on the plane [8]. 

The contribution of this paper is to provide a motion 
planner for millimeter-scale robots swimming freely in a 
fluid and powered by an MRI scanner. We show that, unlike 
the case of very low Reynolds numbers, the combination of 
inertial dynamics and drag forces provided by quadratic 
fluid damping at this size scale enables independent control 
of robots that possess differences in either drag cross section 
or magnetic material. 

The paper is arranged as follows.  The next section 
describes the capsule robots and provides their dynamic 
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model. The third section provides a motion planning method 
based on the differentiated responses of the robots to pulse 
sequences of different durations. The properties of the 
motion planner are illustrated through simulation in the 
subsequent section and confirmed through experiment in 
Section V. Conclusions appear in the final section.  

II. DYNAMICS OF TWO MAGNETIC PARTICLES  

Each capsule consists of a smooth external hollow sphere 
that encapsulates an internal smaller ferrous sphere (Figure 
1a). The two capsules are immersed into a tank with fluid 

and are placed within the magnetic field B0  of an MRI 

scanner. Buoyancy and gravitational forces counteract each 
other by design and therefore they will be neglected in the 
following analysis. 

 
Figure 1. Free body diagram of capsule immersed in water. 

A. Drag force 
The fluid is assumed to have zero flow. This is a 

reasonable assumption since in most human cavities the 
fluid flow is either zero or is very slow. The viscosity and 
the density of the fluid are similar to those of water. The 
fluid remains in a laminar region during the capsule’s 
motion and the drag force is given by: 

  (1) 

where ρ  is the density of the fluid, A is the frontal area of 

the sphere and u  is the capsule’s velocity. The parameter 

Cd  is the drag coefficient and is given by [11]:   

 Cd =
24

Re
+ 6

1+ Re
+ 0.4  (2a)  

and  

 Re = u ρd /η  (2b) 

is the capsule’s Reynolds number, where d  is the capsule’s 
diameter and η  is its dynamic viscosity. The use of Eq. (2) 

can be justified because the Reynolds number is expected to 
be larger than 1000 [11]. 

B. Magnetic force 
The magnetization across the volume of the ferrous sphere 

can be approximated as a lumped effect at the center of mass 
(CM) of the body [12]. Consequently, the magnetized body 

is approximated by a magnetic dipole placed at its CM. 
Inside the MRI its magnetization becomes saturated due to 

the strong magnetic field B  (>1.5T) and is denoted by Ms . 

The magnetic force  acting on the ferrous sphere of 

volume V  is given by [13]: 

  (3) 

where  are the three independent 

magnetic gradients of the MRI, and it has been reasonably 

assumed that  due to the very strong B0  

field of the MRI [13]. 
The present analysis assumes that the magnetic interaction 

between two or more capsules is negligible. This is a 
reasonable assumption because using the dipole-dipole 
magnetic interaction formulas ([14]) it can be shown that the 
magnetic interaction force decays as a function of the 
separation distance to the power of four and becomes 
negligible compared to MRI gradient forces after 
approximately a separation distance equal to 20 diameters. 
For example if the ferrous sphere diameter is 500 μm then a 
10mm separation distance is sufficient to consider the 
magnetic interaction negligible with respect to the MRI 
gradient forces. 

C. Equations of motion 
The equations of motion for the case of two particles are 

given by: 

   (4) 

where , ,  are the drag force and the mag-

netic force correspondingly, and .  The x 

component of Eq. (4) is given by: 
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where ,v = ∂Bz
∂x , and 

. Similar scalar expressions hold for the y  and z  

components.
 

III. MOTION CONTROL  

A. Controllability 
The system of (4) has three orthogonal inputs that 

independently determine the control of motion in each of the 
three axes. Therefore, it is sufficient to consider the 
controllability analysis performed for particle motion along a 
single axis using (5). The results can be directly generalized 

Fd =
1

2
ρCdAu

2

Fm
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∂z
∂By

∂z
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]
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to 3D motion. 
Equation (5) is a second order nonlinear system with drift. 

When more than one particle is present then the system has 
only one control input (the magnetic gradient) and more than 
one degrees of freedom, hence the system is underactuated. 
The linearized state equations are not controllable. 
Furthermore, the sufficiency conditions for small time local 
controllability (STLC) given by Sussmann [15] are not 
satisfied. Hence, nothing can be inferred on the 
controllability properties of the system.  

Intuition suggests, however, that the nonlinear damping in 
combination with inertial transients may enable motion 
differentiation for sufficiently different capsule parameter 
values. To investigate this possibility, control inputs to 
specifically excite the system’s transient response were 
considered resulting in the motion planning algorithm 
described below 

B. Motion planning algorithm 
Consider the case when two particles described by (5) and 

possessing different parameter values are driven by a 

sequence of pulses that have width Δt1 , Δt2  (Figure 2). 

During each pulse, the particles accelerate. Depending on 
the width of the pulse the particles may reach terminal speed 
or they may remain in the transient phase. Each pulse is 

always followed by a zero input of Δtoff  duration that is 

sufficiently long for the capsules to coast to rest. 

 
Figure 2. Sequence of control pulses. 

Pulses of sufficiently long duration drive the particles into 
steady-state motion, where the displacement of one particle 
is proportional to the displacement of the other particle. This 
equality constraint on particles’ position reduces the 
configuration space of two particles to a single dimension, 
i.e. the particles cannot be driven independently to goal 
positions. Sufficiently short pulses, however, drive the 
particles in the transient phase and produce variations in 
relative displacement depending on their duration. This is 
borne out in Figure 3 and Figure 4 that plot displacements 
and the ratio of displacements versus pulse width.  

It can be observed that while the ratio of displacements 
does approach a constant value of about 1.3 for pulses 
greater than 0.1 sec, its value is variable for shorter duration 
pulses. Thus, to independently drive the two capsules to 
desired locations, it is only necessary to pick two pulse 
widths that provide sufficiently different ratios of 
displacement.  The individual displacements, written as 

xi (Δti ),{i = 1,2} , can be arranged in a matrix form called 

the control matrix R to provide a linear equation relating the 

desired particle final displacements, x1
f  and x2

f  to the 

numbers n1  and n2  of pulses of duration Δt1  and Δt2 , 

respectively.  

 
x1
f

x2
f

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

x1(Δt1) x1(Δt2 )
x2 (Δt1) x2 (Δt2 )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

n1
n2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= Rn (6) 

The following two figures depict: (1) the step length of 
the particles as a function of the pulse width Δt  and (2) the 
ratio of the two displacements as a function of the time 
interval Δt . 

 
Figure 3. Step length x1, x2 vs pulse width Δt. 

 

 
Figure 4. Ratio of step lengths vs pulse width Δt. 

As long as the pulse widths correspond to different 
displacement ratios, the matrix R will have full rank and 

unique solution for n1  and n2  will exist. Since the particles 

come to rest between pulses, the sequential ordering of the 
pulses will affect the path, but will not affect the final 
locations of the particles. Note that, in general, arbitrary 
desired displacements will not correspond to integer 
numbers of pulses resulting in small errors in actual 
displacement. These can be reduced by repeating the 
procedure using pulses of shorter duration and thus 
displacement. 

IV. SIMULATION RESULTS  

Simulations were performed to demonstrate the efficacy 
and accuracy of the motion planner and also the effect of the 
sequential ordering of the pulses. The parameters used in all 
simulations are listed in Table 1. In subsection A, the 
particles are constrained to move only along the x-axis. 
Subsection B presents an optimization scheme that explores 
the tradeoff between displacement time and error. 
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TABLE 1.  SIMULATION PARAMETERS 

Parameter Value 

Radius r1 of ferrous sphere encapsulated in 
capsule 1. [m] 

0.0005 

Radius r2 of ferrous sphere encapsulated in 
capsule 2. [m] 

0.00075 

Radius of capsule 1. [m] 0.0015 

Radius of capsule 2. [m] 0.003 

Density of ferrous spheres ρ1,ρ2   [Kg/m3] 7850 

Density of capsule shell (resin) [Kg/m3] 1174 

Density of the fluid  [Kg/m3] 1000 

Dynamic viscosity of the fluid  [Pas] 1.0 10-3 

Magnetization of ferrous spheres  [Am-1] 1.36 106 

Magnetic gradient amplitude  [T/m] 0.02  

A. 1-D simulation along the x-axis 
The following three simulations demonstrate that the 

algorithm is able to generate motion plans that 
independently drive the particles to their goals. Their initial 

positions are set to x1i = x2i = 0mm .  

Simulation 1: In this example, the position of particle 1 is 
kept fixed while particle 2 is programmed to move 10mm 
along the positive x-axis, i.e. the goal is set to

x1 f = 0mm,  x2 f =10mm .  

A plot of the step length versus the pulse width (similar to 
that of Figure 4) is generated by the algorithm and is used to 
select appropriate pulse widths. The selected pulse widths 
are Δt1=0.1s, Δt2=0.037s. These widths were selected 
because the two points are sufficiently apart to ensure that 
the response matrix is not singular and at the same time 
result in pulses of reasonable width (not extremely short or 
large). Also they were selected because, as it will be shown 

shortly, their ratio n2 / n1  is approximately an integer value. 

The corresponding step lengths are given in Table 2: 

TABLE 2.  MOTION PLANNING PARAMETERS 

 Δt1 = 0.1s Δt2 = 0.037s 

Step length x1  (m) 0.01064 0.005394 

Step length x2  (m) 0.007815 0.004147 

The control matrix R is given by: 

R =
x1(Δt1) x1(Δt2 )
x2 (Δt1) x2 (Δt2 )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0.01064 0.005394

0.007815 0.004147

⎡

⎣
⎢

⎤

⎦
⎥  (7) 

The n1  and n2  are found using Eq. (6). Their values are 

given by n1 = −27.4,  n2 = 54 . For implementation, these 

numbers are rounded to integer values, n1 = −27, n2 = 54 , 

and a negative sign indicates pulses of negative amplitude. 
The constructed pulse sequence comprises a repetition of a 

Δt1  pulse followed by n2 / n1  pulses of Δt2  (in this case 

n2 / n1 = 2 ). All n1  and n2  pulses were interleaved by equal 

number of Δtoff  zero amplitude pulses.  

 
Figure 5. Simulation 1. Desired displacements of robot 1 and robot 2 are 0 
and 10 mm, respectively.   

In the plot of Figure 5, the response due to the pulse 
sequence is clearly depicted: a longer response due to 

Δt1 + Δtoff  followed by two consecutive Δt2 + Δtoff  pulses. 

The final error for each particle position is less than half its 
Δt1  response and is due to the rounding of the value of n1  

(the remainder of the rounding is 0.4 of the Δt1  response). 

Furthermore, it is clear that the motion response exhibits an 
oscillation whose amplitude is approximately equal to the 

Δt1  response. Greater accuracy requires selecting smaller 

Δt  values that result in smaller step length and thus in 
higher motion resolution, of course at the expense of time.  

Simulation 2: In this example, the desired particle 
displacements are interchanged, i.e., x1 f = 10mm,  
 x2 f = 0mm . The motion planning algorithm yields 

n1 = 43,  n2 = 87  for Δt1 = 0.0175s,  Δt2 = 0.058s  and the 

resulting motions are depicted in Figure 6. In this example, 
the final position error is only 10% of the goal value. The 
decrease of the error is due to the very small size of the pulse 

widths Δt1,Δt2  (and the corresponding responses). Note 

however that it takes more time to reach the goal.
 

 
Figure 6. Simulation 2. Desired displacements of robot 1 and robot 2 are 10 
and 0 mm, respectively.    

Simulation 3: The first simulation example is now 
repeated but with a different sequential order of pulses to 
demonstrate how the sequential order affects the path of the 
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particles. Here, all 27 negative Δt1  pulses are performed first 

followed by the 54 positive Δt2  pulses. While this results in 

the same final error for both particles, failure to interleave 
the positive and negative amplitude pulses results in large 
overshoot for both particles.  

 
Figure 7. Simulation 3. Desired displacements are the same as Simulation 1, 
but the order of pulses is changed. 

B. Optimizing the selection of Δt1,  Δt2 pulse widths 

Simulations 1 and 2 demonstrate how the choice of pulse 
widths can affect both the time required to complete a 
desired displacement as well as the final position error due 
to pulse number rounding. To investigate this tradeoff, this 
subsection defines an objective function incorporating these 
two variables. 

For a desired set of displacements, ( x1
f , x2

f ), the total time 

is given by  

 ttotal = n1 Δt1 + n2 Δt2 + ( n1 + n2 )Δtoff   (8a) 

 n1 =
(x2 (Δt2 )x1

f − x1(Δt2 )x2
f )

(x1(Δt1)x2 (Δt2 )− x2 (Δt1)x1(Δt2 ))
  (8b) 

 n2 =
(−x2 (Δt1)x1

f − x1(Δt1)x2
f )

(x1(Δt1)x2 (Δt2 )− x2 (Δt1)x1(Δt2 ))
 (8c) 

Assuming that the number of pulses applied is obtained by 
rounding the values provided by the motion planning 
algorithm, the maximum displacement error for a pulse 

width pair Δt1,  Δt2  can be calculated as follows: 

 etotal = e1
2 + e2

2  (9) 

 e1 = max{x1(Δt1) / 2,  x1(Δt2 ) / 2}  (10a) 

 e2 = max{x2 (Δt1) / 2,  x2 (Δt2 ) / 2}  (10b) 

The optimal pair (Δt1
*,Δt2

*)  is defined as the one that 

minimizes the objective function given by  

 J = w1etotal (Δt1,Δt2, )+w2ttotal (Δt1,Δt2, )   (11) 

where w1,  w2  are weighting coefficients. The following 

figure depicts the surface of J(Δt1,Δt2 )  and indicates the 

pair ( Δt1 , Δt2 ) that minimizes J . There are two symmetric 

surfaces corresponding to the pairs (Δt1
*,Δt2

*)  and (Δt2
*,Δt1

*) . 

 
Figure 8. Plot of objective function for x

1

f = 0mm,  x
2

f = 10mm . 

V. MOTION PLANNING EXPERIMENTS  

To test the motion planning algorithm in an MRI scanner, 
hollow spherical capsules were fabricated as hemispheres 
using a 3D printer (Objet, Inc.). The larger capsule had an 
external diameter of 5mm and a wall thickness of 1mm. The 
smaller capsule had an external diameter of 3mm and a wall 
thickness of 0.7mm. Chrome steel spheres were placed 
inside each cavity of the hemispheres which then were glued 
together (Figure 9). 

  
Figure 9. Capsule: (a) Capsule shell and ferrous sphere, (b) Closed capsule. 

The magnetization of the chrome steel becomes saturated 
as soon as it is introduced into a magnetic field greater than 
2T. Its saturation magnetization value is Ms = 1.6 106 Am-1. 

Before insertion into the MRI bore, the capsules were 
placed inside two plastic tanks half-filled with water (Figure 
10). They were then stacked on top of each other and 
inserted inside the bore of a 9.4 Tesla (BioSpec 
94/20,Biospin) research MRI scanner that employs a 400 
mT/m gradient coil with inner diameter, 120 mm. The upper 
tank contained the small capsule, while the lower tank 
contained the larger capsule (Figure 10). The stacked tanks 
are required to keep the magnetized capsules at sufficient 
distance apart to minimize magnetic interaction. During the 
experiments only the x-gradient was activated to aid in 
optical visualization of particle motion. Particle location and 
motion were recorded by video camera.  

The initial position of the particles along the x-axis was 
randomly generated, and was measured to be x1i = 10mm for 
the large capsule and x2i = 25mm for the small capsule with 
respect to the left wall of the tank.  
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Figure 10. Experimental set up in MRI scanner. 

The experimental scenario requires moving the particles 
one cm closer to the origin, i.e. towards the left wall, at x1f = 
0mm and x2f = 1.5mm. The physical parameters of the 
system were either measured or obtained by data sheets. The 
parameter values are those already presented in Table 1.   

The motion planning algorithm was run and generated a 
pulse sequence for driving the capsules to the goal. To 
simplify the implementation of the MRI program we 
adopted the approach of pulse sequential order shown in 

simulation 2. Therefore, we first applied n1 = int(22.3)  

pulses of duration Δt1 = 0.1s  followed by n2 = int(57.5)  

pulses of duration Δt1 = 0.0397s . The experimental results 

are superimposed on the simulation results in Figure 11. 
Future implementations will adopt the approach presented in 
simulations 1 and 2 to minimize the overshoot of the path 
followed by the particles.  

 
Figure 11. Comparison of experimental and simulation results of the 
capsules trajectories. 

The expected theoretical error is in the range 2-3mm 
based on the amplitude of the step responses for the given 
pulse widths. The actual error twice as that. 

There is also a discrepancy of 2.5 cm in the overshoot of 
the experimental and simulated trajectories. The sources of 
this discrepancy are the inaccuracies in the estimated values 
of physical parameters, the assumption that the two particles 
do not interact magnetically, the non-linearity of the 
magnetic gradients towards the boundaries of the bore and 
also the surface tension forces imparted by the walls to the 
capsules. 

VI. CONCLUSION  

Magnetically powered tetherless robots hold great 
promise for medical applications. Since many interesting 
applications involve controlling groups of robots, it is 
important to analyze the controllability of such systems and 
to develop motion planning strategies. This paper presents 
the first results of this type for millimeter-scale swimming 
robots. The proposed motion planning algorithm exploits  
inertial transients together with the nonlinear damping to 
produce differentiated motion. Experimental results 
corroborate the theory. Future work will develop more 
accurate dynamic models and consider larger numbers of 
robotic capsules. 
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